

www.makswell.eu

Work Package 2

Methodological aspects of measuring SDG indicators with traditional and nontraditional data sources

Jan van den Brakel

15-03-2019

Partners:

- 1. Statistics Netherlands (J. van den Brakel, M. Puts, R. Willems, ...)
- 2. Southampton University (P. Smith, N. Tzavidis)
- 3. Istat (F. Bacchinin, A. Ferruza, L. Di Consiglio, ...)
- 4. Pisa University (M. Pratesi, C. Giusti)
- 5. Trier University (R. Münnich, F. Ertz)
- 6. Destatis (N. Rosinski, T. Zimmermann, K. Wichmann)

Introduction

- 1. Purpose
- 2. Inventory traditional and non-traditional data sources
- 3. Examples from CBDS and Istat
- 4. Combining survey data with non-traditional data sources
- 5. Non-traditional data sources a primary data source
- 6. Discussion

1. Purpose WP2

- Overview of traditional and non-traditional data sources for SDG indicators
- Methodological development using new data sources (big data)
 - Integration of traditional and traditional data sources (small area estimation, nowcasting)
 - Pointing out quality aspects of big data (representativity, timeliness, ...)
- Review of good and bad practices
- Identify needs for future research

2. Inventory traditional and non-traditional data sources

- Countries: Italy, the Netherlands, Germany
- Overview for all indicators
 - Published
 - Status (official / developed)
 - Data source
 - Frequency
 - Regional detail (NUTS level)
 - Alternative (no-traditional) data sources

2. Inventory traditional and non-traditional data sources Results Italy

Goal	Total ind.	Published	Anually	Lower fre	NUTS 0	NUTS 1 or 2	Survey	Register	Other
1	7	5	5	0	2	3	4	1	
2	9	4	3	1	3	1	4	0	
3	21	13	11	2	4	9	2	19	
4	8	6	4	2	1	5	4	1	1
5	10	6	2	4	3	3	3	3	
6	9	5	1	4	0	5	4	1	
7	4	4	4	0	1	3	2	0	2
8	17	12	8	4	5	7	3	9	
9	9	6	6	0	2	4	2	3	1
10	8	4	4	0	0	4	1	3	
11	11	9	8	1	3	6	3	3	3
12	10	4	4	0	2	2	0	4	
13	6	1	1	0	1	0	0	1	
14	7	2	2	0	1	1	0	1	1
15	11	6	3	3		6	3	1	2
16	21	8	3	5	3	5	6	2	
17	25	4	4	0	3	1	2	2	

3. Examples

- Google trends to measure propensity to move (CBDS)
- Improving the Italian CPI using scanner data
- Mobile phone network data (day time population, mobility, tourism, migration flows, poverty, economic growth)
- Webscraping from websites (estimating number of innovative companies, prices)
- Social media studies (classifying messages to measure social tension and sentiment, including a nowcast excersise with the consumer confidence index)
- Found data: estimating unmetered photovoltaic power using time series of electricity taken from the high voltage grid and time series on solar irradiance, day length, temperature, ...

3. Examples

- Remote sensing data
 - Copernicus project on land use in Germany
 - Satellite data for statistical information on land use
 - Classify vegetation indices with random forest
 - Successful for main categories of land use
 - Measuring urban sprawl using satellite data (CBDS)
 - Data: MODIS Terra satellite: NDVI (250m—500m)
 - Machine learning methods to classify land use
 - Support Vector Machines
 - Random forest
 - K-nearest neighbors
 - Convolutional deep neural network

3. Examples

- Remote sensing data (cont.)
 - Detecting photovoltaic Solar panels in aerial images
 - Aerial images resolution 25 cm
 - Classification methods:
 - VGG16 convolutional neural network
 - Random forest

- Data sources for SDG indicators: survey data, register data, nontraditional data
- Non-traditional data as covariates in model-based inference procedures
 - Small area estimation
 - Time series models

Small area estimation

- Survey data modeled using
 - Area level model (Fay-Herriot)
 - Unit level model (Battese-Harter-Fuller)
- Traditional covariates: census data
 - Problem: low frequency, not available in developing countries
 - Non-traditional data sources often on higher frequencies
- Literature on predicting SDG related indicators on poverty, literacy, income, unemployment (survey data) with mobile phone data, satellite images, traffic intensity, web-scraping of online prices, etc

Time series models

- NSI's: repeated surveys
- Time series models: use temporal and cross-sectional correlations
 - Small area estimation
 - Nowcasting
- Structural time series models versus Box-Jenkins ARIMA / VARIMA
- Auxiliary series in structural time series models:
 - Regression component
 - Multivariate structural time series models

Time series models cont.

- SDG related examples:
 - Monthly unemployment using claimant counts in the UK and the Netherlands
 - Consumer confidence and sentiment from social media messages
- Advantages:
 - Improves precision (SAE)
 - Non-traditional data sources at higher frequency: nowcasting

Time series models cont.

- Issue: dimensionality problem
- Google trends, e.g. unemployment and search behavior on internet
- Dynamic factor models:
 - Central Banks to nowcast quarterly GDP with monthly indicators
 - Extract p common factors from n auxiliary series using PCA (p << n)
 - Multivariate structural time series model for survey series and auxiliary series
 - Common factors: dynamic trend model correlated with trend of the survey series

5. Non-traditional data sources a primary data source

- Examples for SDG indicators:
 - Satellite and aerial images to measure forest decline, urbanization, air quality
 - Sensor data for traffic intensity, air quality
 - Data measure the phenomena of interest
- General:
 - Data generating process is unknown
 - Difficult to generalize results to an intended target population
 - Selection bias (similar to non-response in survey data)

5. Non-traditional data sources a primary data source

- Methods to correct for selection bias:
 - Calibration and weighting
 - Quasi randomization or pseudo-design based methods
 - Sample matching
 - Model-based approaches
 - Super population methods
 - Informative sampling

6. Discussion

- Deliverable 2.1 and 2.2 (April 2019)
- Overview of traditional and non-traditional data sources for SDG indicators
- Examples of using non-traditional data sources for SDG indicators and official statistics (with or without survey data)
- Review of methodology for non-traditional data sources
 - Covariates in model-based inference
 - SAE -> WP3
 - Time series methods for now casting -> WP4
 - Primary source
- Deliverable 2.3: identify needs for future research (February 2020)