

www.makswell.eu

Insights on statistical methodologies and new data sources for SDG and well-being indicators

Work Package 2 Methodological aspects of measuring SDG indicators with traditional and nontraditional data sources

> Jan van den Brakel Third Makswell workshop, 05-03-2020, Barcelona, Spain

Partners WP 2:

- 1. Statistics Netherlands
- 2. Southampton University
- 3. Istat
- 4. Pisa University
- 5. Trier University
- 6. Destatis

Outline

- 1. Purpose WP 2
- 2. Del. 2.1
- 3. Del. 2.2
- 4. Needs for further research: Del. 2.3
- 5. Discussion

1. Purpose WP2

- Overview of traditional and non-traditional data sources for SDG indicators
- Methodological development using new data sources (big data)
 - Integration of traditional and non-traditional data sources (small area estimation, nowcasting)
 - Pointing out quality aspects of big data (representativity, timeliness, ...)
- Review of good and bad practices
- Identify needs for future research

2. Del. 2.1: Aspects of existing databases, traditional and nontraditional data sources and collection of good practices

- Overview of traditional and non-traditional data sources for SDG indicators, through an inventory in Italy, the Netherlands and Germany
- Review of good and bad practices:
 - Google trends to measure propensity to move (CBDS)
 - Improving the Italian CPI using scanner data
 - Mobile phone network data (day time population, mobility, tourism, migration flows, poverty, economic growth)
 - Webscraping from websites (estimating number of innovative companies, prices)
 - Social media studies (classifying messages to measure social tension and sentiment, including a nowcast excersise with the consumer confidence index)
 - Found data: estimating unmetered photovoltaic power using time series of electricity taken from the high voltage grid and time series on solar irradiance, day length, temperature, ...

2. Del. 2.1: Aspects of existing databases, traditional and nontraditional data sources and collection of good practices

- Review of good and bad practices (cont.):
 - Found data: estimating unmetered photovoltaic power using time series of electricity taken from the high voltage grid and time series on solar irradiance, day length, temperature, ...
 - Remote sensing data
 - Copernicus project on land use in Germany
 - Measuring urban sprawl using satellite data (CBDS)
 - Detecting photovoltaic solar panels in aerial images

3. Del. 2.2: Methodological aspects of measuring SDG indicators with traditional and nontraditional data sources

- Combining survey data with non-traditional data sources:
 - Small area estimation
 - Time series methods for now-casting
- Non-traditional data sources as a primary data source
- Evaluating sustainability through an input-state-output framework as an alternative for juxtapose a large set of indicators

- 1. Quality frame work
 - Probability samples:
 - Sampling error through variance estimation
 - Non-sampling errors: Total Survey Error (TSE) frame work
 - Non-probability data, non-traditional data, big data etc:
 - No established quality frame work
 - Extension of the TSE frame work to these new data sources: Total Error Frame-work (TEF)
 - Account for the specific features of new data sources, e.g.
 - Identification error of units of interest in fuzzy big data
 - Linkage errors
 - Feature extraction errors
 - Quantifying uncertainty under machine learning and AI alg.

- 2. Additional methodology
 - Use of non-traditional data sources in official statistics:
 - Primary data source
 - Covariates in model-based inference procedures (SAE, time series models, now-casting)
 - Primary data source:
 - Correction for selection bias
 - Methods require structured data and strong auxiliary information
 - Need for new methods that handle these issues
 - Need for methods to obtain insight in the performance of existing methods if auxiliary information is obscured with errors (linkage errors, feature extraction errors, identification errors,

- 2. Additional methodology (cont.)
 - Covariates in model-based inference procedures:
 - More empirical evidence to illustrate:
 - Efficiency of SAE methods compared to machine learning algorithms
 - Usefulness in the production of official statistics
 - Time series models:
 - Dynamic factor state-space model for high dimensionality issues
 - How to select relevant series without falling into the trap of data dredging?
 - How to account for time-varying state correlations?

- 3. Risk appetite of NSI's
 - Well-accepted approach: probability sampling in combination with design-based inference
 - Robust for model-misspecification
 - NSI is in control over
 - Minimum required accuracy of the outcomes
 - Availability of data,
 - Use of new data sources:
 - Model-based inference to correct for selectivity or as covariates in SAE and nowcasting procedures
 - More empirical research to illustrate the benefits of such methods in the context of official statistics

- 4. Remote sensing data
 - Successful in absence of high quality official data on well-being, poverty and SDGs
 - But also for European situations? Requires high quality remote sensed data!
 - Integration of remotely sensed data in the frame-work of SDGs and well-being measurement is predominantly experimental
 - Need for a comprehensive overview of datasets and methods to facilitate their use in official statistics

- 4. Remote sensing data (cont.)
 - Statistical purpose is predictions for well-being and SDGs:
 - spatial comparisons
 - temporal comparisons
 - Requires:
 - combining multiple images
 - comparing images of the same area over time
 - Issues:
 - spatial image inconsistency
 - temporal image inconsistency
 - computational power and data storage capacity

gome-A Reflectivity for 2019074

- 4. Remote sensing data (cont.)
 - Research:
 - methods that reduce spatial and temporal image inconsistency
 - better understanding how these error sources influence/increase uncertainty of predictions for poverty, wellbeing and SDGs
 - methods that account for or reduce the influence of these error sources
 - methods that quantify the increase of uncertainty on predictions for well-being, poverty and SDGs due to these error sources
 - research into methods to validate the reliability of constructs for poverty and well-being derived from remote sensed data

- 4. Remote sensing data (cont.)
 - Data and hardware issues
 - processing images for large areas and longer periods require considerable computational power and data storage capacity
 - availability of the required AI hardware and AI knowledge is not standard available at national statistical institutes
 - satellite images of sufficient quality or resolution are only commercially available
 - to evaluate methods, geo-coded unit level data on income and poverty are required
 - to facilitate wider development of satellite-based applications an Europe wide computing infrastructure should be established

- 5. Deep learning
 - Important for analyzing satellite and aerial images
 - Example from Del 2.1: counting solar panels and land use
 - Further research:
 - better understanding error sources to evaluate uncertainty of estimation results
 - how to create training sets, test sets and validation sets to maximize model generalizability to intended target populations
 - minimize the effect of errors in the annotating process
 - the impact of class imbalance on uncertainty measures
 - methods to quantify how these errors contribute to estimation uncertainty
 - model interpretability and transparency
 - data science and hardware knowledge for computationally intensive methods

5. Discussion

Further needs for research

- Quality frame work for non-traditional data sources
- Needs of a new/extended framework to measure wellbeing and SDG indicators in terms of data sources, methodology, and quality requirements
- Extension of methodology to correct for selection bias
- Applications of SAE that uses non traditional data sources as covariates
- Time series methods
- Risk appetite of NSI's: empirical applications in the context of official statistics
- Methods for processing remote sensing data
- Deep learning
- Deliverable 2.3: Planned deadline February 2020