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Summary

The MAKSWELL project was set up to help strengthen the use of evidence and information on

well-being and sustainability for policy-making in the EU, as the political attention to well-being

and sustainability indicators has also been increasing in recent years. Traditionally sample surveys

provide the primary source of data that are used for measurement frameworks for well-being and

sustainability. However, survey organisations and national statistical institutes frequently review and

occasionally change their approaches to collecting survey data. Although such changes are motivated

by the need for a more efficient approach to allocating resources, they can lead to breaks in the series

of published estimates known as discontinuities. This report presents approaches to estimating and

adjusting for discontinuities in survey data. Alternative methodological approaches are presented,

some of which assume the availability of experimental or pilot data under the new design, whilst other

approaches make use of time series methods for quantifying discontinuities and hence not requiring

the use of pilot data. The methods we present are illustrated using real data from the UK and the

Netherlands. The targets of estimation are defined both at national (aggregate) level and subnational

(domain) levels. The report presents estimation and inference both under the design-based and model-

based frameworks. The methodological tools are general and therefore transferable to other survey

settings.

Deliverable D4.3 3



1. Introduction ......................................................................................................... 1

2. Methods for estimating discontinuities: A review ......................................................... 3

2.1.Introduction................................................................................................ 3

2.2.Parallel run ................................................................................................ 3

2.2.1. Model variants and extensions .................................................................. 8

2.3.Structural time series model............................................................................ 9

2.4.Combining a parallel run with a time series ....................................................... 11

2.5.Adjustment methods .................................................................................... 12

3. Data sources and applications in the presence of a parallel run: The case of surveys in Wales13

3.1.Survey data from Wales ................................................................................ 13

3.2.Application to the Welsh Surveys .................................................................... 15

4. Data sources and applications using structural time series with no parallel run: The UK

International Passenger Survey................................................................................17

4.1.UK data from the International Passenger Survey ............................................... 17

4.2.Application to the UK International Passenger Survey.......................................... 17

5. Data sources and applications using a structural time series and a parallel run: The Dutch

Consumer Survey .................................................................................................22

5.1.The Dutch Consumer Survey.......................................................................... 22

5.1.1. Parallel run ....................................................................................... 22

5.1.2. Backcast method ................................................................................. 24

5.1.3. STM................................................................................................. 25

5.1.4. Combination ....................................................................................... 28

5.1.5. Backcasting ........................................................................................ 29

6. Summary ............................................................................................................31

Deliverable D4.3 4



1. Introduction
Surveys are susceptible to a wide range of different types of errors Groves (2004). There has been a

traditional, theoretical focus on sampling errors that is, on how much an estimate is likely to differ from

the true value because we use a sample rather than observing the whole population. But in recent years

there has been a bigger emphasis on errors arising from the use of questionnaires and measurement

errors, which cover a range of types of issues, from non-response and processing (including data entry

and scanning) to data editing and a range of other processes. Many surveys maintain consistent

methodologies over quite long periods and one of the drivers behind this decision is to keep these

errors as consistent as possible between different instances of the survey. This means that estimates

of change will be approximately unbiased and this feature is of some significance for users of surveys

who therefore prefer to avoid changes (Van den Brakel et al., 2008). It follows that changes to survey

procedures may have an effect on estimates, and it is these types of effects which are normally called

discontinuities. This may be due to the fact that the mode has changed from face-to-face/use of CAPI

to the use of the web and it is known that the presence of an interviewer can give rise to satisficing

i.e. giving socially acceptable rather than factually correct answers to questions, particularly where

these are about perceived sensitive topics. In some cases, questions from multiple surveys are put

together in a single questionnaire. This is done to make a logical structure and flow for the questions,

but there are still risks that there will be question order or context effects and respondents’ answers

to particular questions may be affected by the other questions that have already been asked in the

interview, particularly the most recent ones. A difference in such effects will give rise to a discontinuity

and it is not usually apparent from the survey data which answer is closest to the true one. Additional

re-interview studies or matches to administrative data are required to address this.

The aim of this report is to present research relevant to the estimation of survey discontinuities

both when a parallel pilot survey under the new design is available and when such a survey is not

available. Emphasis is placed on presenting applications using real data from the Netherlands and the

UK. Although the case studies we present are specific to survey data from these two countries, the

same methodologies can be applied to data from other countries including data used for estimating

SDGs and other indicators. A novel feature in this report is that in addition to methodology for

estimating discontinuities at national level, we further present methodology appropriate for estimating

discontinuities at sub-national (domain) levels. This is important as in many applications interest is in

estimating indicators at disaggregated levels of geography. The methodology we describe in this report

focusses on changes in survey designs and might be adapted for situations where surveys are replaced

by big data sources. Using big data (alternative data sources) instead of survey data is a topic we

cover in other deliverables of the MAKSWELL project and may also result in discontinuities. However,

measuring and adjusting for these discontinuities requires careful thinking and possibly developing new

methodology and hence this is not covered as part of this report.

The structure of the report is as follows. In Section 2 we present an extensive review of methods

for estimating discontinuities and adjusting for discontinuities, a topic that in our view requires ad-
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ditional research. In particular, a working definition of a discontinuity is provided and three cases

are presented, a) methodologies when data from a parallel run (pilot) under the new survey design

are available, b) time-series methodologies when data from a parallel run are not available and c)

time-series methodologies when data from a parallel run are available. This section further describes

design-based and model-based methodology for estimating discontinuities at domain level. In Section

3 we present results from the application of methods when data from a pilot survey (parallel run)

under the new design are available. The data we use in this case come from the UK (surveys in Wales)

and interest is in estimating discontinuities both at aggregate and domain levels. In Section 4 we

present results from the application of structural time series methods but no data from a parallel run

are available. The data we use for illustrating the methods in this case come from the UK interna-

tional passenger survey. In section 5 we compare results for discontinuities in the Dutch Consumer

Survey, based on a parallel run only, a structural time series model without a parallel run only, and a

combination of a parallel run and a structural time series model. The last section summarises the key

findings and areas for future research.
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2. Methods for estimating discontinuities: A review

2.1. Introduction

The full analysis of discontinuities in the change from an original set of surveys to the new survey(s)

is likely to be a long process of several stages as evidence accumulates on the new design. In order to

assist users and build confidence in the new survey design, it is important to make and publish early

estimates of discontinuities. Assessing survey discontinuities is a challenging problem (Van den Brakel,

2008, Bollineni-Balabay et al., 2016). The best way to obtain good estimates of the discontinuities

in a survey is to run an experiment embedded within the survey and use the results to estimate the

discontinuity. In this way it is possible to have most control of the design and therefore to tailor the

design to the properties needed (accuracy, cost etc). Designing an experiment embedded within a

survey can be challenging. More typically, survey organisations use a pilot test of the new design in

parallel to the original survey(s). In some of the case studies we present as part of this report we use

a pilot survey (under the new design) in conjunction with information from the original surveys to

produce estimates of the difference between estimates from the new survey (approximated by the pilot)

and estimates from the old survey(s). The pilot test of the new design is not an embedded experiment,

but does have similar properties which allow the estimation of differences between the old and new

survey implementations. In the absence of a parallel run, recent literature has proposed the use of

structural time series models as an alternative approach for estimating discontinuities. A combined

approach that uses data from a parallel run with a structural time series model is also possible and

will be outlined in this report.

2.2. Parallel run

As described in Van den Brakel et al. (2019), the most straightforward approach to estimate the

size of the discontinuity is to collect data under the old and new survey designs alongside each other

for some period. This is referred to as parallel data collection or parallel run. A parallel run is

preferably designed as a randomized experiment, where the sampling units from a probability sample

are randomized over the current and alternative survey designs such that the subsamples can be

considered as the treatment groups in an experiment. To maximize the precision of a randomized

experiment embedded in a probability sample, the structure of the sample design can be used to identify

potential control variables for the experimental design. Instead of directly randomizing sampling units

over treatments according to a Completely Randomized Design, Randomized Block Designs (RBD)

can be used. In an RBD sampling units are randomized over the treatments within homogeneous

groups or blocks. This eliminates the variation between the blocks from the variance of the treatment

effects, similar to the concept of stratified sampling in sampling theory. Potential block variables

are obviously sampling structures like strata, primary sampling units, clusters and interviewers. For

details see Fienberg and Tanur (1987, 1988, 1989), Van den Brakel and Renssen (1998, 2005), ?? (bra).

Another important part of the design of an experiment is to choose the minimum required sample

size of the parallel run. Therefore an advance decision is required about the minimum detectable

discontinuity that should result in a rejection of the null hypothesis that a discontinuity equals zero

at a pre-specified significance level (i.e. the probability that the null hypothesis is true but incorrectly

rejected) and power (i.e. the probability that alternative hypothesis is true and the null hypothesis is
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indeed rejected). For details of the computation of the required size of the parallel run see Van den

Brakel et al. (2019). A disadvantage of a parallel run is that extra cost is required for additional data

collection. Obtaining sufficiently precise estimates for the discontinuities often requires large sample

sizes. Designing and conducting an experiment for parallel data collection that accurately measures

the discontinuities due to the changeover also significantly increases the complexity of the fieldwork

operation. In addition, a parallel run is used to estimate the discontinuity in the level of the series.

Discontinuities in the seasonal pattern are also possible, but the estimation of such discontinuities

would require an unrealistically long parallel run.

The standard literature for design and analysis of experiments applies model-based inference proce-

dures for the analysis of experiments. In this case estimates for the discontinuities are obtained from

the estimated treatment effects of a linear model underlying an appropriate ANOVA for the applied

experimental design. A drawback of this approach is that the sample design is ignored, which might

result in biased estimates for the discontinuitiesin the case of sample designs with unequal inclusion

probabilities, as well as incorrect variance estimates if for example stratification or clustering is ig-

nored. For the analysis of experiments embedded in sample surveys Van den Brakel and Renssen (1998,

2005), ?? (bra) developed a design-based inference procedure that accounts for the sample design as

well as the superimposition of the applied experimental design on the sampling design. Denoting by

θ̂∗ an estimate of a parameter of interest under the original (old) survey and by θ̂ an estimate using

the pilot (new design) data, an estimator of the discontinuity at national (aggregate) level, ∆̂, can be

defined as follows,

∆̂ = θ̂ − θ̂∗. (2.1)

For the purposes of the applications we consider in this report, we focus on the estimation of means

and proportions. Hence, in the case of using a complex survey design, an estimator of the finite

population average, θ, of a random variable y is given by the well-known Horvitz-Thompson (HT) or

Hajek estimator of the mean,

θ̂ =
( n∑
i=1

yi/πi
)
/
( n∑
i=1

1/πi
)
, (2.2)

where πi is the corresponding sample inclusion probability of unit i = 1, ..., n. Point and variance

estimates of ∆̂ can be derived using standard survey estimation techniques that account for the

possibly complex survey design of the surveys. In finite population sampling it is customary to try

and increase the accuracy of the HT estimator if suitable auxiliary information that is correlated

with the outcome is available. This can be achieved by means of the generalized regression estimator

(GREG), see (Särndal et al., 1992). The GREG estimator is defined as follows,

θ̂GREG = θ̂ + β̂T (X̄ − ˆ̄x) (2.3)
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where X̄ are the populations means of the auxiliary variables and ˆ̄x are the estimated (using the HT

or Hajek estimators) means of the auxiliary variables.

The problem becomes somewhat more complex when interest is in measuring possible discontinuities

at small domain level, a problem that in our experience survey organisations are likely to be interested

in. Extending the definition above to include the estimation of discontinuities at domain level i, we

derive the following estimator,

∆̂i = θ̂i − θ̂∗i (2.4)

Estimating the variance of the discontinuity is important.Analytical expressions for variance estimation

for the HT/Hajek and the GREG are given in Van den Brakel and Renssen (2005). However, the

sample size of the pilot survey is usually smaller than that of the original survey(s). This means

that the estimates, particularly for subgroups of the population (domains) are likely to have large

sampling variances. Since the pilot survey has a small sample size and large variance, the estimated

difference will also have a large variance, and we won’t have much evidence to say whether there has

been a discontinuity. In order to improve our ability to say whether the difference is important, we

need a way to reduce the variance, possibly by using statistical models. The approach is to fit models

to the observed estimates using other variables, which are related to them but also measured with

greater accuracy. These are typically administrative data, but survey data may also be used. For the

purposes of the work we present here we need a working definition of a discontinuity. In one sense

all of the differences between the estimate from the pilot and the corresponding estimate from the

original survey are estimates of discontinuities. However, a more realistic definition would be that

there is a consistent difference. This is challenging to assess with the pilot data as it is likely to have

only a limited set of pilot run observations, so it is not directly possible to say whether any observed

difference will be consistent. The estimates generally have quite large variances relative to their size,

and therefore a formal hypothesis test will not be informative. This leads to a subject-matter based

definition for discontinuity of 5 percentage points, but we note that quality measures for the estimates

of discontinuities are needed so that these can be interpreted appropriately according to context. For

the applications presented in this report discontinuities are evaluated at different levels as outlined

below.

1. National (aggregate) discontinuity. The first level is an evaluation of the national level discontinu-

ities for a range of important variables. These estimates are supplemented by an approximation

to the survey design for calculating the variances of the estimates. The estimators that we use

are motivated under the design-based estimation framework.

2. Design-based domain-specific discontinuity. The second level is the calculation of design-based

discontinuity estimates for particular domains based on the difference between the design-based

estimate from the pilot survey and the design-based estimates from the original surveys. The

variance is conservatively calculated as the sum of the independent variances. The estimate is

tailored specifically for the domain of interest, but because of the small sample sizes, the variances
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may be quite large. Nevertheless, as we will see, there are instances where the confidence interval

for the estimated discontinuity does not include zero.

3. Model-based domain-specific discontinuity. In this case we use small area models in particular,

the area-level Fay-Herriot model (Fay and Herriot, 1979), which are fitted to direct estimates for

domains accounting for their estimated variances, and which use other data sources as predictors.

The principle of model-based estimation is to combine a biased but accurate estimator derived

from the model with an unbiased but variable estimate derived from the survey. So, the outcome

will be an estimator with a small mean squared error (MSE). That is, the outcome will be closer

to the unobserved true value on average than the original unbiased estimator. Hence, estimates

calculated using this approach balance a small amount of bias resulting from the use of data

from multiple groups (domains) against a reduction in variance in such a way so as to make the

mean squared error of the estimates as small as possible.

The classical approach to producing estimates for small domains from sparse data is to use a small

area model, incorporating information from a data source that is well correlated with the variable of

interest. In this case we have the estimates from the original surveys, θ̂∗, which should be very strongly

correlated with the measurement under the new design, θ̂. Our general approach for estimating

domain-specific discontinuities is to use the area-level model by Fay and Herriot (1979) as a way to

incorporate this information, following the approach in Van den Brakel et al. (2016). Under this

approach we model the direct estimate for a domain i under the new concept for the variable of

interest, θ̂i, as follows,

θ̂i = θi + εi

θi = XT
i β + ui

(2.5)

The first part in equation (2.5) defines the sampling model whereas the second part defines the linking

model. In equation (2.5) Xi is a vector of auxiliary variables defined at domain level (that can include

the estimates from the original survey, θ̂∗), β is a vector of model parameters to be estimated, ui is a

domain random effect and εi is the sampling variance of the direct estimates obtained with the data

from the parallel run. The two errors are assumed to be independent, ui ∼ N(0, σ2u), εi ∼ N(0, ψi)

and ψi is assumed to be known. The empirical best predictor (EBLUP) of θ under the Fay-Herriot

model is defined as follows,

θ̂EBLUPi = γ̂iθ̂i + (1− γ̂i)XT
i β̂, (2.6)

where γi = σ2
u

σ2
u+ψi

is the shrinkage factor. The mean squared error (MSE) of θ̂EBLUPi can be estimated

by using either the analytic estimator proposed by Prasad and Rao (1990) or computer intensive meth-

ods for example, the parametric bootstrap under the FH model. In its simplest form the parametric

bootstrap consists of generating bootstrap samples (b) using the assumptions of the FH model and the

estimated, with the original sample, parameters φ̂ = (β̂, σ̂2u, ψ̂i), computing new true area parameters
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θi(φ̂) and computing new EBLUP estimates using the generated bootstrap samples, θ̂
EBLUP,(b)
i (φ̂(b)).

Using a total of B bootstrap samples, the estimated MSE of θ̂EBLUPi is then computed using

M̂SE(θ̂EBLUPi ) =
1

B

B∑
n=1

(θ̂
EBLUP,(b)
i (φ̂(b))− θi(φ̂))2

An estimator of the discontinuity is then defined as follows,

∆̂M
i = θ̂i

EBLUP − θ̂∗i , (2.7)

where the superscript M is used to denote that a model is used in this case. Estimating the MSE

of ∆̂M
i requires careful consideration. In the simplest case, we can assume that θ̂i

EBLUP
and θ̂∗i are

independent and therefore the MSE of ∆̂M
i can be estimated by the sum of the estimated MSE of

θ̂i
EBLUP

and the estimated design variance of θ̂∗i . This is not an unreasonable assumption given

that the pilot survey and the original survey are independent and assume that the probability of

having overlapping units between the two surveys is small. Nevertheless, there is a situation where

an additional covariance term needs to be accounted for when estimating the MSE of ∆̂M
i . This is

when the design-based estimates under the old design θ̂∗i are used as auxiliary variables in the FH

model. This is a reasonable strategy for selecting model covariates since it is reasonable to expect a

high correlation between the direct estimates from the old and the new surveys. A solution to this

problem is proposed by Van den Brakel et al. (2016).

Let us now provide some additional comment on the FH model. The need to assume that ψi is known

is because in the case of area-level models we work with area/domain-level data with one data point

per domain available. Hence, given the available data, it is not possible to estimate ψi. In the simplest

case ψi is estimated by using survey micro-data or is supplied by the data provider (if no survey

micro-data are available) and then treated as fixed in the model. This is the approach we follow in

the applications we present in this report. Alternative methods that account for the uncertainty in

estimating ψi have been proposed in the literature using for example a hierarchical Bayes framework

(You and Chapman, 2016) and can be implemented for example by using R and OpenBUGS. It is

important to produce good estimates of ψi from the regular survey accounting for the complex design

features, as these affect the weight given to the direct and indirect estimates under the FH model

equation (2.5). The strength of the area-level model is that it has a very simple formulation, and can

be fitted using aggregate (area-level) data. Access to aggregate data is easier than access to unit-level

and this is an added advantage of the area-level model. The model relies on there being enough small

areas to estimate the heterogeneity via random effects. In the applications we present in this report

this should be fine for areas such as local authority districts, however, for other domains such as local

health boards the number of groups is rather small. We will therefore consider whether including

the random effects in the model is of added value, or the use of a direct estimator is sufficient. The

data requirements for estimating these models are modest - only the area-level estimates from the old

and parallel (new) surveys plus their sampling errors taking into account the complex survey designs

are needed. Additional variables at the same geographical level (e.g. population estimates, possibly
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within age-sex subgroups) may be useful as additional explanatory variables in the model. In order

to assess whether this is an important difference, we would like to be able to combine the model and

sampling variances, noting that they are not independent. An estimator for the variance of ∆̂M
i is

given by Van den Brakel et al. (2016), and we propose to follow their approach in the applications.

The modelling of the data is undertaken with the R statistical software package.

2.2.1. Model variants and extensions

Alternative approaches to modelling are also possible. One suggestion is model the discontinuity i.e.

the difference between the two estimates directly. There is a debate over whether this is practical,

on one side holding that it is more logical and methodologically simpler to estimate directly what

you are interested in, and on the other considering that there may be no good predictors for directly

modelling the discontinuity. In contrast, the estimates from the old survey would be good predictors

for modelling the estimates under the new design. A further approach is to use a multivariate area-

level (Fay-Herriot) model to jointly model the direct estimates under the new and old designs. An

alternative approach would be to use a fully Bayesian approach to model directly the discontinuity and

also to account for the uncertainty in the estimation of the sampling variance. The advantage in this

case is that we can propagate the uncertainty from various sources, hence making the estimation of the

mean squared error of the discontinuity estimates easier to quantify. Another aspect of the models we

use in the applications presented in this report is that they do not account for the measurement error

in the auxiliary variables coming from the old survey(s). Clearly, this is a strong assumption. However,

approaches to accounting for the presence of measurement error in the case of the Fay-Herriot model

having been considered in the literature and can be implemented with the data available (see Ybarra

and Lohr (2008), Bell et al. (2019)). Assessing the uncertainty of the estimated discontinuities is also

important if we were to attempt to make adjustments to the estimates. One pragmatic approach is to

use the 5 percentage points rule as the threshold for defining significant discontinuities. However, using

hard boundaries is always problematic, and we are suggesting that it is more important to assess the

discontinuity estimates with respect to their variances than to have a hard boundary rule. In addition,

important differences are likely to be of different sizes in different variables. It is nevertheless useful

to have an initial position against which to assess estimates of discontinuities, so one can use the 5

percentage points rule as a guide.

From the topics listed, we will focus on the extension of the Fay-Herriot model to account for covariate

measurement error. This is important as in the case of our application we did not have access to

population (Census or register) data. Hence, the only source of model covariates were survey data,

which are subject to sampling error. Following Ybarra and Lohr (2008) we assume that the Xi are

fixed unknown quantities hence we consider a functional measurement error area-level model. In this

case, the EBLUP is defined as follows,

θ̂EBLUP−ME
i = γ̂ME

i θ̂i + (1− γ̂ME
i )XT

i β̂, (2.8)

where the superscript ME indicates that we are working under the Fay-Herriot model that accounts

for covariate measurement error, γME
i = σ2

u+β
TViβ

σ2
u+β

TViβ+ψi
and Vi is the matrix of estimated sampling
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variances of the survey-based covariates Xi.

An estimator of the discontinuity in this case is defined by,

∆̂M−ME
i = θ̂i

EBLUP−ME − θ̂∗i . (2.9)

2.3. Structural time series model

When there is no parallel run, a time series model can be used to estimate the discontinuity. This

is called the intervention approach. The intervention approach with state-space models is originally

proposed by Harvey and Durbin (1986) to estimate the effect of seat belt legislation on British road

casualties. ? and Van den Brakel and Roels (2010) applied this approach to estimate discontinuities

induced by a redesign of a sample survey process. See Durbin and Koopman (2012) for a general

introduction to structural time series models. In the simplest case, a univariate model is sufficient.

We start with the description of the structural time series model. In the structural time series model, a

time series yt, t = 1, . . . , T is modelled as the sum of different components. We consider the following

components:

1. Trend (Lt)

2. Seasonal (St)

3. Regression component (β
′
xt), here used to model the discontinuity

4. White noise (It)

In a more general model, cycles and AR- or MA-components can be added, and a regression component

can be used to take an auxiliary series into account. This is not considered here. So we write:

yt = Lt + St + β
′
xt + It, t = 1, . . . , T. (2.10)

In the literature, different models for the trend are described. Here we use the smooth trend model,

which is defined by

Lt = Lt−1 +Rt−1

Rt = Rt−1 + ηt

E(ηt) = 0

cov(ηt, ηt′) =

{
σ2η if t = t′

0 if t 6= t′

where Lt is called the level and Rt can be interpreted as the slope. This model often results in quite
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stable trend patterns.

For the seasonal, the trigonometric model is used in this paper. The seasonal pattern is described

with a set of J
2 harmonics, with J the number of periods in a year (J = 12 for monthly figures).

St =

J/2∑
j=1

γj,t

γj,t = γj,t−1 cos

(
π j

J/2

)
+ γ∗j,t−1 sin

(
π j

J/2

)
+ ωj,t

γ∗j,t = γ∗j,t−1 cos

(
π j

J/2

)
− γj,t−1 sin

(
π j

J/2

)
+ ω∗j,t

j = 1, . . . , J/2

E(ωj,t) = E(ω∗j,t) = 0

cov(ωj,t, ωj′,t′) = cov(ω∗j,t, ω
∗
j′,t′) =

{
σ2ω if t = t′ and j = j′

0 if t 6= t′ or j 6= j′

The last harmonic is reduced to γ6,t = −γ6,t−1 and γ∗6,t is not required (for monthly figures). In a

more general model, it can be assumed that each harmonic has its own variance σ2ω,j .

Then the regression component is used to model the discontinuity, i.e. xt = 0 for all periods t before

the discontinuity, and xt = 1 from the moment the discontinuity occurs. In the general case, more than

one discontinuity may occur at different points in time. Then, more than one of such components can

be added. Under the assumption that the sum of the trend Lt and seasonal St correctly models the

evolution of the population variable, the regression coefficient β can be interpreted as the systematic

effect of the redesign on the level of the series.

In a cross-sectional survey, the white noise parameter It is the sum of unexplained noise in the pop-

ulation parameter and the sample error, as these two noise variables cannot be distinguished. It is

modelled as

E(It) = 0

cov(It, It′) =

{
σ2I if t = t′

0 if t 6= t′

With this formula, it is assumed that the variance of the sample error is constant over time, and

especially, that is does not change due to the redesign. When this assumption is not appropriate,

changes in this variance can be modelled as well. This will be discussed in the next section.

This model can be applied to estimate discontinuities in series which are caused by redesigns. Some-

times, it is necessary to apply a tailor-made model to take specific properties of the series and the

redesign into account. In the case of the Consumer Confidence Survey (CS) a small change of this
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model is necessary, as will be discussed in the next section.

As pointed out in the literature (for example Van den Brakel and Krieg, 2015) it is assumed with step

intervention βxt that the redesign only has a systematic effect on the level of the series. Alternative

interventions, e.g. for the slope or the seasonal components are also possible, see Durbin and Koopman

(2012) and Van den Brakel and Roels (2010). Note that a discontinuity in the seasonal pattern can

only be estimated after some years of data collection under the new design.

The estimate of the discontinuity can be improved if auxiliary information is available. This auxiliary

information should be a related series which is not affected by the discontinuity. Then, a multivariate

time series model can be used, where both the target series and the auxiliary series are the input. The

auxiliary series is modelled as a sum of trend, seasonal and white noise. By modelling a correlation

between the slope disturbances of both series, the auxiliary series is used to improve the estimates of

the trend of the target series and therefore also of the discontinuity. It is also possible to take the

auxiliary series into account by a regression component.

The general way to fit a structural time series model is to express the model in the so-called state-space

representation and apply the Kalman filter to obtain optimal estimates for the state variables, see e.g.

Durbin and Koopman (2012). Estimates for state variables for period t based on the information

available up to and including period t are referred to as the filtered estimates. The filtered estimates

of past state vectors can be updated, if new data become available. This procedure is referred to as

smoothing and results in smoothed estimates that are based on the completely observed time series.

The analysis is conducted with software developed in OxMetrics in combination with the subroutines

of SsfPack 3.0, see Doornik (2009) and Koopman et al. (2008). The non-stationary variables are

initialised with a diffuse prior, i.e. the expectation of the initial states are equal to zero and the initial

covariance matrix of the states is diagonal with large diagonal elements. The white noise is stationary

and therefore initialised with a proper prior. The initial value is equal to zero and the variance is

equal to the hyperparameter σ2I .

In Ssfpack 3.0 an exact diffuse log-likelihood function is obtained with the procedure proposed by Koop-

man (1997). Maximum likelihood estimates for the hyperparameters, i.e. the variance components of

the stochastic processes for the state variables are obtained using a numerical optimization procedure

(BFGS algorithm, Doornik, 2009). To avoid negative variance estimates, the log-transformed variances

are estimated.

2.4. Combining a parallel run with a time series

The two methods described above, the parallel run and the structural time series approach, can be

combined. This can be done with exactly the same structural time series model as before, but now

with the estimate of the discontinuity included through an exact initialization of the Kalman filter.

When no parallel run is conducted, the variable β is initialized with a diffuse prior. This means that

no information about the size of the variable is available. With a parallel run, there is a point estimate

from the parallel run, together with the variance of this estimate. This information is used to initialize

the discontinuity with an exact prior. When the model is estimated, this prior information is improved
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using the information of the development of the series before and after the parallel run. This approach

is interesting when a short parallel run is carried out and the estimates based on this parallel run are

not sufficiently accurate.

2.5. Adjustment methods

After estimating the discontinuities, it has to be decided whether and how the series are corrected,

in order to avoid that real developments are confounded with the discontinuities. One possibility is

to publish the uncorrected series together with the estimates of the discontinuity. For some users,

however, consistent series are necessary, and with this choice the correction is left to them. It is also

possible to publish corrected series. Then the series from the past can be adjusted to the level under

the new design, which is called backcasting. It is also possible to adjust the observations under the new

design to the level of the series before the changeover. This works similarly as backcasting and is not

discussed here. Backcasting methods are often based on synthetic approaches that use naive numerical

adjustments that rely on the strong assumption that the observed discontinuities are time-invariant.

Additive adjustments simply subtract the difference between the level under the old and the new

design from the series observed before the changeover to make it comparable with the observations

under the new design. This assumes that the adjustment is independent of the value of the series to be

adjusted. Ratio adjustments multiply the series observed before the changeover with the ratio of the

levels under the new and the old designs and assume that the adjustment is proportional to the level

of the observed series. This approach can be useful to make appropriate adjustments for variables

that cannot take negative values. Both backcasting methods depend on strong assumptions, and the

choice between them depend on which assumptions seems more plausible, and on the necessity to avoid

impossible values in the adjusted series. When both additive and ratio adjustment are not plausible,

other backcasting methods can be developed according to the assumptions about the development of

the discontinuity in the past.
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3. Data sources and applications in the presence of a parallel run:

The case of surveys in Wales

3.1. Survey data from Wales

We illustrate the methodology for estimating survey discontinuities when data from a parallel run are

available. In particular, the Welsh Government (WG) has reviewed the way in which social surveys are

conducted in Wales, and for a range of reasons, including value for money grounds (for more details

of the options and reasons for choosing among them see Welsh Government, 2014), instituted a new

National Survey (NSn) from 2016. The NSn collects information previously collected in five other

surveys, the [old] National Survey (NSo), the Welsh Health Survey (WHS), the Active Adults Survey

(AAS), the Arts in Wales Survey (AWS) and the Welsh Outdoor Recreation Survey (WORS). The

NSn has a longer questionnaire which allows many (but not all) of the questions from the original

surveys to be included, though the exact pattern of timing for the inclusion of particular questions

has not yet been worked out in all instances.

The process of agreeing the NSn involved consultations with the customers of the existing surveys

and negotiations to ensure that the new structure is best able to meet their needs and that they are

happy to support it. It is important, however, to demonstrate to the users that the methodology for

the new survey is appropriate and to produce estimates of the change in the series (discontinuity)

caused by the change from one design to another. The NSn is similar in concept to the NSo, but

has some differences in the design intended to make it as statistically efficient as possible. It follows

the NSo in using a rotating design which covers all regions in Wales over a year in a regular pattern,

such that any aggregation of a contiguous year of sample cases forms an unclustered sample, with

associated benefits of lower sampling variance relative to clustered designs. Shorter periods remain

clustered. Some differential sampling by Local Authorities (LAs) is included to ensure that there are

sufficient cases to form the basis of estimates for LAs in Wales (22 in total) and Welsh Health Boards

(7 in total). The work we present in this application is important because the Wellbeing of Future

Generations Act 2015 (Welsh Government 2015), which applies to all public bodies in Wales, requires

decisions to be made with regard to a wellbeing model, using evidence from national indicators and

between a quarter and a third of these indicators come from the NSn, so the accuracy and credibility

of the survey are particularly important to support this policy. The characteristics of the five original

surveys are summarized in Table 3.1. They cover a wide range of topics and have a combined annual

sample size of 40,900; the sample size for the NSn is 12,000.

Table 3.1: Design features of the original surveys

Survey Frequency and last instance Average interview length (mins) Sample Size Design

National Survey Annual, continuous 2014-15 25 14.500 Face-to-face
Welsh Health Survey Annual, continuous 2015 25 15.000 Primarily self-completion
Active Adults Survey Every two years 2014 20 8.000 Face-to-face
Arts in Wales Survey Every five years 2015 15 7.000 Face-to-face

Welsh Outdoor Recreation Survey Every three years 2014 15 6400 Telephone interview
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The data from the last instances of these component surveys were made available in a secure setting

at the University of Southampton. The National Survey (NSo) was taken from the version deposited

at the ESRC Data Archive, the Welsh Outdoor Recreation Survey microdata are freely available

in anonymised format and the other three surveys were provided directly under specific agreements

for processing in a secure facility. All the datasets are provided with weights, which compensate

for the sampling (using sampling weights) and non-response (using either or both of a non-response

propensity model adjustment and a calibration adjustment for known population totals by age-sex

and local authority). These weights were used in the modelling and variance calculation procedures.

For the purposes of estimating discontinuities the new survey is represented in this report by the

National Survey pilot (parallel run), and its design was as similar as possible to the new survey design.

The main differences are that it was clustered for fieldwork efficiency, though still designed to provide

reasonably precise estimates at national level, and that sampling was more differential by LA so that

approximately equal interview numbers were achieved in each local authority. The sample was drawn

from the postcode address file and was stratified by LA. Fieldwork took place closely after the end

of fieldwork for the final waves of the 2012-15 National Survey, the Active Adults Survey, and the

Welsh Outdoor Recreation Survey and in parallel with the final waves of the Welsh Health Survey

and the Arts in Wales Survey. The median survey length in the parallel run was approximately

45 minutes, with substantial subsampling and a computer assisted self interviewing (CASI) module

covering potentially sensitive topics (mainly ones taken from the current Welsh Health Survey). The

data from the parallel run were made available under specific agreements for processing in a secure

facility at the University of Southampton.

Interest in our applications was in estimating discontinuities both at national and domain levels with

domains defined by local authorities and health board districts also cross-classified by demographic

groups for example, age by gender groups. For estimating discontinuities we are making the following

assumptions:

1. There is no material difference between the properties of the estimates from the pilot (parallel)

run and the properties of the estimates from the NSn, except for those that are due to sampling

variation. That is, that the pilot survey is the same as the new National Survey, just with a

reduced sample size. This is a reasonable assumption since the structure of the survey is the

same and since the one real difference is accounted for approximately in the calculation of the

standard errors.

2. The impact of the timing differences between the last instances of the five original surveys and

the pilot on estimation are negligible. In some cases, the surveys overlapped with the pilot survey.

The Active Adults Survey and Welsh Outdoor Recreation Survey were one year in advance of

the parallel run.

3. There are no differences in the responses due to seasonality caused by the limited time period

of the pilot (a six-month survey period) and the whole-year versions of the original surveys.
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In Section 3.2 survey discontinuities are estimated for a range of variables and domains for four of the

original surveys. However, due to the sensitive nature of the variables, the results for this application

are presented in an anonymised form, i.e. we do not disclose the names of the variables, the surveys and

the domains. Instead, we report the levels of discontinuities and corresponding confidence intervals.

3.2. Application to the Welsh Surveys

Table 3.2 presents ranges of national (aggregate) discontinuities for different variables in four of the

original Welsh surveys estimated by using the pilot data under the new design. These are ranges of

point estimates and not confidence intervals. Our analyses aims at estimating discontinuities both at

national and domain levels. Estimates at national (aggregate) level are obtained using equation (2.1).

We conclude that for a range of surveys and variables we consistently estimate negative discontinuities

(in particular for survey 1). A number of variables also show discontinuities that are larger than the

nominal five percentage points threshold. These results indicate that an adjustment for continuity

may be needed.

A more detailed picture is provided by estimating discontinuities at domain level (different definitions

of domains are used for creating the various plots). Figures 3.1 and 3.2 serve a twofold purpose. The

left-hand side figures present estimated discontinuities for different domains using three estimation

approaches namely, a direct domain estimator (in this case we use the Horvitz-Thompson (HT) esti-

mator, denoted by DiscHT) and two model-based estimators under the Fay-Herriot model (DiscFH)

and the Fay-Herriot model that accounts for covariate measurement error (DiscME). We note that the

model-based estimates of discontinuities are more stable than direct estimates. This may be expected

since direct estimation may rely on small domain-specific sample sizes. Secondly, we observe that in

most cases the model-based estimates that account for covariate measurement error are closer to the

direct estimates than the model-based that do not account for covariate measurement error. This is

also something we may expect since accounting for the uncertainty in the covariates may increase the

weight we give to the direct estimator. The right-hand side figures show 95% confidence intervals

constructed by using the estimated variance of the HT estimator and the Prasad and Rao (1990)

analytic estimator in the case of the estimates produced under the Fay-Herriot model. In this case

we assume independence and therefore ignore the covariance term proposed by Van den Brakel et al.

(2016). Confidence intervals for the domain estimates under the FH measurement error model are not

presented as computation in this case requires the use of computer intensive methods e.g Jackknife

(see Ybarra and Lohr (2008)). As expected, we notice that model-based estimates have narrower

confidence intervals compared to direct estimates that are computed using only domain specific data.

These plots also show the presence of what we would classify as significant discontinuities for specific

domains (see for example the plot for variable 2).

Table 3.2: Ranges of estimated national discontinuities in 4 of the original surveys in Wales

Surveys Ranges of discontinuities

Survey 1 -0.108, -0.058
Survey 2 -0.111, 0.166
Survey 3 -0.082, 0.110
Survey 4 -0.152, 0.184
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Figure 3.1: Left figure: Estimated discontinuities (using different estimators) for variable 1 in different
domains. Right figure: 95% confidence intervals of direct and model-based (FH) estimates.
The two plots present results for different definitions of domains.
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Figure 3.2: Left figure: Estimated discontinuities (using different estimators) for variable 2 in different
domains. Right figure: 95% confidence intervals of direct and model-based estimates. The
two plots present results for different definitions of domains.
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4. Data sources and applications using structural time series with no

parallel run: The UK International Passenger Survey

4.1. UK data from the International Passenger Survey

An additional source of data we will use in one of our applications is the UK International Passenger

Survey (IPS). The IPS interviews people as they enter or leave the United Kingdom through ports,

airports and the channel tunnel (the land border between Northern Ireland and Ireland is not covered).

Interviewers attempt an interview with every kth traveller, in some cases screening them to find out

if they are a migrant (in which case they get a series of questions appropriate to migrants), and in a

subset of cases going on to ask questions on expenditure. The interview has been designed to be short

and to be flexibly administered by interviewers to maximise response. Data were collected on paper

questionnaires and then keyed (mostly) on site via a laptop into a bespoke software tool (Blaise), then

transmitted to the UK Office for National Statistics (ONS) via a secure connection, until 2017-18.

ONS changed the data collection mode to use tablet-administered questionnaires, which have benefits

from validation, coding etc at the point of data capture. Changing the mode of collection and the

associated changes in the questionnaire and editing procedures may result in a discontinuity in the

IPS estimates and a potential step change in the key IPS time series of travel, tourism and migration.

As we have already discussed in this report, a discontinuity is defined as a change in an estimate that

results from a change in the collection approach and is not a change due to sampling error or a real

change due to a change in the environment. Such a discontinuity needs to be measured, controlled and

understood in order that the IPS time series before and after the change can be compared accurately.

The ONS decided to make the change by a gradual roll-out to the various interviewing locations,

which made the transition operationally feasible, because different interviewer teams operate in each

location. This presents less information than a situation with an embedded experiment, where the

treatments (different modes) can be randomised at some level, or a parallel run, but still provides a

way to estimate the parameters of the transition with a state space model. The standard approach to

dealing with possible discontinuities in time series resulting from changes to field procedures involves

an embedded experiment in the survey, starting with a small experiment run alongside the standard

survey procedure. If there is no evidence of a major change from this, then it is extended, and finally

the new method is rolled out with a small part retaining the original method. ONS’s assessment of

the operational considerations in introducing the change to the IPS was that the randomisation of

cases, interviewers or shifts would introduce too much disruption and therefore risk to the quality of

the outputs. There were also requirements for the roll-out of training for interviewers that made a

staged transition interviewer team by team (where a team may cover a single site or a group of sites)

the most tractable implementation approach. This makes it more challenging to estimate the specific

effect of any discontinuity.

4.2. Application to the UK International Passenger Survey

In this section we analyse the data we introduced in Section 4.1. For this application discontinuities

are estimated using the Structural Time Series approach that we presented earlier in this report in

Section 2.3. One modification, however, is required. Covariate xt in equation (2.10) now represents
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Table 4.1: Definitions and abbreviations of key IPS variables

Inflow variable Definition Outflow variable Definition

svisukres Number of overseas visits by UK residents svisosres Number of visits to the UK by overseas residents
sexpukres Expenditure abroad by UK residents in pounds sexposres Expenditure in the UK by overseas residents in pounds
smigosar Overseas residents migrating to the UK smigukdep UK residents migrating abroad
sflowarr Total arrival passenger flow sflowdep Total departure passenger flow

sflowarrn Arrival passenger flow excluding flow from Channel Islands and Isle of Man sflowdepn Departure passenger flow excluding flow from Channel Islands and Isle of Man

an indicator explanatory variable which takes the value 0 before the discontinuity is introduced, then

an increasing positive value, which is the fraction of sampling units observed under the new design,

as the rollout progresses, and then the value 1 once the rollout is completed and for all subsequent

periods.

The models are expressed in state-space form and the Kalman filter is used to estimate the state vari-

ables (Durbin and Koopman, 2012). The models have been implemented in OxMetrics (Doornik, 2009)

in combination with SsfPack (Koopman et al., 2008). The Kalman filter works by producing initial

estimates based on the first data points, and then updating these as more information accumulates.

In practice this often means that early estimates are very large (or small) with very large variances,

but that as data accumulate they settle to a more stable level and variance. As a discontinuity is

introduced, we would therefore expect early estimates to be far from the truth (particularly as early in

rollout there is little information on which to base an estimate since few ports will be using tablets),

but to converge to a more stable estimate as further data accumulate.

Table 4.1 presents the definitions and abbreviations of key IPS variables. Figure 4.1 shows the esti-

mated discontinuity for svisosres. In this case the estimate seems to be close to stabilising, although it

is hard to say what will happen when additional data points are added. The estimated discontinuity

(in millions of people) in Jun 2018 is −244 ± 150, which is significantly different from zero, but not

very accurately estimated. By contrast, Figure 4.2 shows the estimated discontinuity for sexpukres,

and here there is no sign that the estimate has stabilised yet. The latest month’s estimate is still

quite different from the previous month, and the estimated confidence intervals are wide. In both of

these examples, the behaviour of the trend components of the models have not changed as a result of

the addition of the latest data. This suggests that there has been no detectable effect of Brexit, or

possibly that some of the Brexit effect has been picked up in the estimate of the discontinuity.

Table 4.2 summarises the estimates of discontinuities for inflow variables at June 2018. Since these are

filtered estimates, the latest estimate is the best as it uses all the information in the series. However,

it may be that all the accumulated information is not yet sufficient to stabilise the estimate, and

we have made a subjective judgement based on the evolution of the series about whether they have

converged; only further data will demonstrate whether this is correct, so this may not be the most

helpful information. However, it seems clear that making adjustments from the current values will be

risky in the current situation, where none of the inflow variables seems to have converged.

Table 4.3 provides similar summary information on the outflow variables. Among these variables,

there are some instances where there appears to be some move towards convergence in our subjective

judgement. It is also interesting that one of the variables shows a discontinuity significantly different
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Figure 4.1: Estimated discontinuity and its 95% confidence interval for svisosres

Table 4.2: Summary statistics on estimates of discontinuities at June 2018 for inflow variables

Variable Units Estimated discontinuity - June 2018 Estimated se Sig different from zero? (α = 0.05) Approx. converged? (subjective judgement)

svisukres th 45 234 N N
sexpukres £M -109 189 N N
smigosar no. -8804 4793 N N
sflowarr th -217 195 N N

sflowarrn th -202 197 N N
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Figure 4.2: Estimated discontinuity and its 95% confidence interval for sexpukres
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Table 4.3: Summary statistics on estimates of discontinuities at the latest data point (June 2018) for
outflow variables

Variable Units Estimated discontinuity - June 2018 Estimated se Sig different from zero? (α = 0.05) Approx. converged? (subjective judgement)

svisosres th -243 77 Y Y
sexposres £M -169 121 N Y

smigukdep no. -5733 3070 N Y
sflowdep th 44 255 N N

sflowdepn th 40 257 N N

from zero. This discontinuity may therefore be real. However, we have made several comparison tests

simultaneously, so finding one significant result by chance is less surprising, and we could interpret

this as providing only mild evidence for a real effect.

Most of the estimates of discontinuities are not significantly different from zero. Nevertheless, some of

the discontinuities are large, and the effects on estimated numbers of migrants are relevant to users.

The discontinuity in expenditure by overseas residents is also large enough to affect the interpretation

of the series. Almost all of the discontinuity estimates are negative, which means that the measurement

made with tablets is lower than the previous paper-based measurement. This seems to contradict the

initial indications from the pilot study, which were that the tablets were better at capturing expen-

diture, which was therefore higher in the new mode. The pilot used a small sample, however, and

may not be a strong indicator of direction. If the indications of direction of the discontinuity from the

pilot were correct, it is possible that the size of the discontinuity is at least in part confounded with

changes in migration and expenditure patterns influenced by changing exchange rates and uncertainty

over Brexit. A final adjustment still requires further time periods to ensure that the estimated discon-

tinuity has indeed stabilised, and therefore revised series based on these revised adjustments should

be expected in the future.
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5. Data sources and applications using a structural time series and a

parallel run: The Dutch Consumer Survey

5.1. The Dutch Consumer Survey

5.1.1. Parallel run

In the first three months of 2017, a parallel run took place for the Dutch CS. Detailed results of this

parallel run are shown in Table 5.1 for one variable (economic situation of the last 12 months). The

results are quite similar over the three months. In that period, most of the respondents were positive

about the economic situation. We see that the percentage for “a little better” increases substantially

under the new design. The percentage for “a little worse” increases too, but much less. On the other

hand, the percentages for the neutral answers (“same” and “don’t know”) and for “a lot better” and “a

lot worse” decrease.

We assume that part of these changes can be explained by the changes in the questionnaire. Under

the old design, the respondent had to choose between better, same or worse, and when the situation

was changed only a little, the answer better or worse probably did not feel appropriate, not knowing

that “a little better/worse” are possible answers. Therefore, the respondents chose one of the neutral

options. On the other hand, under the new design the respondent chooses one of the the options “a

little”, and in the period of the parallel run, mostly “a little better”. We do not have an explanation

for the fact that the options “a lot better” and “a lot worse” are chosen less often under the new design.

Table 5.2 shows the mean differences for the percentages for three other variables. The results are

similar for the economic situation in the last 12 months (Table 5.1) with an increase in the percentages

of “a little better” and “a little worse” and a decrease in the neutral options. The decrease in the

percentages for “a lot better” and “a lot worse” is smaller for these three variables.

Table 5.3 summarizes the estimates for the discontinuities in pi,+, pi,− and yi for all 8 indicators. We

see that the question about major purchases, the only question where the questionnaire has not been

changed, is the only question where the discontinuity for the positive answers is negative, and smaller

Table 5.1: Results of the parallel run, economic situation in the last 12 months

January February March
old new diff. old new diff. old new diff. mean diff.

a lot better 14.1 7.0 -7.1 14.9 7.8 -7.1 16.4 9.9 -6.5 -6.9
a little better 31.3 51.1 19.8 31.1 50.0 18.9 32.4 48.6 16.2 18.3

same 35.7 25.6 -10.1 35.0 25.8 -9.2 34.0 25.7 -8.3 -9.2
a little worse 7.1 10.0 2.9 6.0 10.4 4.4 6.6 8.4 1.8 3.0

a lot worse 6.1 3.4 -2.7 6.9 3.1 -3.8 5.8 3.2 -2.6 -3.1
don’t know 5.8 2.9 -2.9 6.1 2.9 -3.2 4.8 4.2 -0.6 -2.2
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Table 5.2: Results of the parallel run, mean differences in the percentages over three months, for three
variables

Econ. next 12 months Fin. last 12 months Fin. next 12 months

a lot better -0.8 -2.2 0
a little better 17.6 10.9 11.1

same -7.7 -11.6 -11.3
a little worse 1.8 7.6 4.8

a lot worse -1.7 -4.4 -1.7
don’t know -9.2 -0.3 -2.8

Table 5.3: Results of the parallel run, estimates of the discontinuities

positive answers SE negative answers SE difference
Econ. last 12 months 11.4 1.3 -0.1 0.9 11.5

Econ. next 12 months 16.8 1.2 0.1 0.8 16.7
Fin. last 12 months 8.7 1.0 3.2 1.1 5.5

Fin. next 12 months 11.1 1.0 3.1 0.9 8.0
Major purchases -4.7 1.2 0.1 0.8 -4.8

Economic climate 14.1 - 0.0 - 14.1
Willingness to buy 5.0 - 2.1 - 2.9

Consumer confidence 8.7 - 1.3 - 7.4

than for the other questions. As the focus of this paper is on the first 5 indicators, the standard errors

of the last three indicators are not shown. In the continuation of this section, other estimates for these

discontinuities will be computed, and we will compare both the point estimates and the standard

errors.
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5.1.2. Backcast method

The results of the parallel run suggest that the respondents tend to choose the “a little” answer options

more often and the neutral answer options less often under the new design. During the parallel run,

which was a period of positive consumer confidence, especially the option “a little better” was chosen

more often. It seems likely that in a period of negative consumer confidence, the option “a little worse”

would be chosen more often. This means that in periods of positive consumer confidence, the difference

between positive and negative answers should be larger under the new design, whereas in periods of

negative consumer confidence, this difference should be smaller. Therefore both the additive and the

ratio adjustment methods are not plausible. It seems better to apply the correction on the percentages

pi,+ and pi,− instead of yi. The percentages have to be between 0 and 100. The correction is applied

in such a way that the correction becomes smaller when the percentage is close to these limits. This

way, the probability is smaller that the corrected percentage is outside the interval [0,100]. This is

realized by making the correction proportional to the population variances of the percentages. Let po

denote the percentage under the old design. The corrected percentage p̃oi,t,s is computed as:

p̃oi,t,s = p̂oi,t,s + βi,s
p̂oi,t,s(100− p̂oi,t,s)
p̂oi,τ,s(100− p̂oi,τ,s)

, s = +,− (5.1)

for all periods t before the changeover, i = 1, ..., 5 the 5 relevant questions of the CS. p̂oi,t,s is the

estimated percentage under the old design and τ is the period of the parallel run. Dividing by

the population variance of this period (mean of the three months) makes sure that the corrected

percentages for these three months are close to the values observed under the new design during the

parallel run. The values βi,s are the estimates for the discontinuity for the positive and negative

answers, for example the values shown in Table 5.3, or other estimates based on the structural time

series model, as will be discussed later.

Note that the size of the correction in formula (5.1) depends on the percentage p̂oi,τ,s under the old

design during the parallel run. When p̂oi,τ,s is very small, a small change of the estimate of the

discontinuity βi,s could have a large effect on the correction. For example, with p̂oi,τ,s = 1, p̂oi,t,s = 50,

p̃oi,t,s = 62.6 when the estimate of the discontinuity is βi,s = 0.5, but p̃oi,t,s = 75.4 when the estimate

of the discontinuity is βi,s = 1. Given the standard errors of the estimates of the discontinuity, this

shows that the accuracy of the discontinuity estimates would be unsufficient for reliable corrections in

this case. In the application at Statistics Netherlands, 10 ≤ p̂oi,τ,s ≤ 90 for the 5 considered variables,

which makes the corrections less sensitive to small estimation errors.

Note furthermore that in extreme cases, with small values of p̂oi,τ,s, it is theoretically possible that the

corrected percentage p̃oi,t,s is not inside the possible range between 0 and 100. Then it is obvious that

the assumptions under (5.1) does not hold, and another correction method should be developed. for

example an alanysis based on a log ratio transformation.

Note that this backcast method is based on strong assumptions about what causes the discontinuity

and about what the effects of the changes would be in times of a negative consumer confidence. The

same correction method is also applied for the fifth question, where the questionnaire is not changed.

The advantage of this method is that it is very unlikely that the corrected values are outside the
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possible interval.

5.1.3. STM

For the proposed backcast method, estimates for the discontinuities of the percentages are needed.

Instead of the model of Section 2.3, a multivariate model is used, where the three percentages of the

positive, negative and neutral answers are modelled at the same time and it is ensured that the sum

of the estimates of the discontinuities is equal to 100.

We use the following model

pt = Lt + St + β
′
xt + It, t = 1, . . . , T.

with pt = (p̂t,+, p̂t,0, p̂t,−)
′

direct estimates for the percentages, Lt = (Lt,+, Lt,0, Lt,−)
′

the trend

component, St = (St,+, St,0, St,−)
′

the seasonal component, β = (β+, β0, β−)
′

estimates for the discon-

tinuities, xt = (xt, xt, xt)
′

the intervention variable, It = (It,+, It,0, It,−)
′

the noise component.

The variables Lt,s, St,s, s = +, 0,− are modelled as described in Section 2.3. The variable xt is the

same for the three series, as the discontinuity occurs at the same time. The restriction that β+, β0

and β− add up to zero is enforced with the following transition equations in the state-space model:

βt,+ = βt−1,+

βt,− = βt−1,−

βt,0 = −βt−1,+ − βt−1,−

The subscript t indicate the notation of the transition equations. As there is no disturbance term, β

is still time independent.

The white noise parameters represent the sum of noise due to sampling errors and noise in the pop-

ulation parameter. The sampling error depends on the sample size, which is approximately constant

over time, and the percentage p̂t,s, s = +, 0,− itself, as the variance of the direct estimate p̂t,s is

var(p̂t,s) =
p̂t,s(100−p̂t,s)

n with n ≈ 1000 the sample size. To take this into account, we model

E(It,s) = 0

cov(It,s, It′,s) =

{
p̂t,s(100− p̂t,s)σ2I,s if t = t′

0 if t 6= t′

When the estimate of σ2I,s is around 1
1000 , the noise in the series is explained by the sampling error.

This is the case for some of the series considered here. For some other series, the estimate of σ2I,s is

much larger (around 1
300). This means that in these series there is substantial noise in the population

parameter.
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Table 5.4: Results STM with diffuse prior, estimates discontinuities, based on data until June 2019

positive answers SE negative answers SE

Econ. last 12 months 10.0 2.9 0.5 2.7
Econ. next 12 months 19.7 3.4 -0.3 3.3

Fin. last 12 months 9.7 1.2 2.2 1.5
Fin next 12 months 12.1 1.2 4.7 1.5

Major purchases -6.6 1.8 1.4 1.6

In this application, there is no reason to assume that the variance of the noise parameter changes due

to the redesign. In other applications, this could be the case. Then it is possible to take this into

account by modelling different hyperparameters for the periods before and after the changeover.

With such a multivariate model, it is also possible to model correlations between the model parameters,

for example between the disturbance terms of the slopes. This is not applied in this case.

This model is applied on series for the 5 questions of the CS. The series start in April 1986, and up

to and including March 2017, the estimates are based on the old design. Estimates from April 2017 -

June 2019 are based on the new design.

The estimates for the discontinuities which are found with this model are shown in Table 5.4. Here,

the information from the parallel run is not used. The estimates are computed 2 years and three

months after the redesign, with the data up to and including June 2019. The point estimates are

comparable to the direct estimates based on the parallel run (Table 5.3) whereas the standard errors

are substantially larger. These large standard errors are caused by properties of the CS-series. The

series are quite flexible, therefore model predictions and estimates of the discontinuities are not very

accurate. In other applications, it is possible that the model estimates of the discontinuities are more

accurate than the direct estimates based on the parallel run (with the same size of the parallel run),

see Van den Brakel et al. (2019) for an example.

The estimates of the discontinuities improve when more data gets available. Table 5.4 shows the most

accurate estimates which can be computed in July 2019. In the first months after the changeover, less

data were available, and less accurate figures could be computed. Figure 5.1 shows the estimates of the

discontinuities based on the data up to and including April 2017 (first point on the x-axis) until June

2019 (last point on the x-axis). So the figures show how the estimates of the discontinuities evolve

when more data is available (economic situation over the last 12 months is used as an example). It can

be seen that the estimates are in the right order of magnitude from the beginning. Nevertheless there

are some visible changes in the first 6 months. In this periods, the standard error of the estimates

decreases substantially. After about 6 months, the point estimates and the standard errors are stable.

It can be expected that the estimates of the discontinuities improve when more data gets available

also in other applications. Often, a period of a year (when monthly data is used) is sufficient to get

close to the final estimate. However, it is possible in other applications that the estimate after a few
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months is not yet reliable.

Figure 5.1: Development of point estimates (left panel) and standard errors (right panel) discontinu-
ities with diffuse prior, economic situation last 12 months
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Table 5.5: Results STM with exact prior, estimates discontinuities, based on data until June 2019

positive answers SE negative answers SE

Econ. last 12 months 11.2 1.1 -0.03 0.8
Econ. next 12 months 17.3 1.1 0.2 0.7

Fin. last 12 months 9.1 0.8 2.9 0.9
Fin next 12 months 11.7 0.7 3.6 0.8

Major purchases -5.1 1.0 0.3 0.7

5.1.4. Combination

When the results of the parallel run are used as an exact prior in the structural time series model,

the accuracy of the estimates is improved. The results are shown in Table 5.5. There are some small

changes, compared to the estimates based on the parallel run only (Table 5.3), and the accuracy is

slightly improved (compare with Table 5.3).

Figure 5.2 shows the development of the estimates of the discontinuities based on the data up to and

including April 2017 (first point on the x-axis) until June 2019 (last point on the x-axis). Again,

economic situation over the last 12 months is used as an example. Similar as in the situation with

diffuse prior, there are some visible changes in the first 6 months, and in this period, the standard

error of the estimates decreases. The changes are, however, much smaller, since the information from

the parallel run is included.

Figure 5.2: Development of point estimates (left panel) and standard errors (right panel) discontinu-
ities with exact prior, economic situation last 12 months
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5.1.5. Backcasting

Now, the backcast method described in Section 5.1.2 is applied. Figure 5.4 compares the original series

under the old design and the corrected series for the percentages positive and negative answers. Again,

economic situation over the last 12 months is used as an example. The discontinuities based on both

the parallel run and the time series models (Table 5.5) are used here. The data under the new design

is added. We see that the correction is larger for the positive answers than for the negative answers.

This is since the discontinuity for the positive answers is much larger. We see furthermore that the

correction is larger in periods where the percentage of positive answers is large. This is because of the

chosen correction method. This correction of the percentages results in a correction of the differences,

which is shown in Figure 5.4.

Figure 5.3: Estimates of percentages positive, negative under old design, new design, and old design
corrected for discontinuity, economic situation last 12 months
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Figure 5.4: Estimates of differences under old design, new design, and old design corrected for discon-
tinuity, economic situation last 12 months
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6. Summary
When a survey is redesigned, it is likely that discontinuities in survey estimates occur. It is important

that discontinuities are quantified, in order to separate the real development of the target parameter

and changes due to the redesign of the survey process. When the series are corrected for the dis-

continuity, the interpretation of the changes is straightforward. In this report, different methods to

quantify the discontinuity are discussed and applied to data from the UK and the Netherlands. The

first method is based on a parallel run, the second one on the structural time series model and the

third on a combination of both methods under which information from the parallel run and the time

series can be combined to improve the estimates for the discontinuities. In the application to the

Welsh survey data discontinuities are estimated both at aggregate and domain levels using design-

based and model-based estimators. The results show that discontinuities are present in some surveys.

In addition, model-based estimators improve the accuracy of the estimated discontinuities. In the

application to the Dutch Consumer Survey, the estimates based on the structural time series model

are less accurate, since the series are quite flexible. As a result the white noise of the population

parameter is of the same order as the size of the sampling error. The variance of direct estimates of

the consumer confidence only account for the sampling error and ignore the variance of the population

parameter white noise. The time series model accounts for both sources of uncertainty and can be

regarded as a more realistic measure of uncertainty, see Van den Brakel et al. (2017) for a detailed

motivation. Different correction methods are discussed. All methods rely on strong assumptions about

how the new design would have affected the estimates in the past. For the Dutch Consumer Survey,

a tailor-made correction method is applied, as the assumptions of standard synthetic methods are

not plausible. This method is applied to correct the series observed before the redesign to the level

obtained with the new survey process. This corrected series is published as an official series of the

Dutch Consumer Confidence.

This report does not resolve a number of open research questions. To start with additional research

in model-based methods for estimating discontinuities is needed. This includes (a) jointly accounting

for the fact that the sampling variance in the FH model is estimated and for covariate measurement

error and (b) exploring model variations for example, the multivariate specification and the direct

modelling of a discontinuity. Additional research is also needed in developing benchmarking techniques

for discontinuities. Benchmarking is used in domain estimation to ensure that domain estimates are

consistent with aggregate estimates at national level. However, how benchmarking can be applied

when estimating and adjusting for discontinuities is currently an open research problem. Finally, as

mentioned earlier in this report, the methods we present are currently applicable when working with

survey data. Using new forms of data may also result in discontinuities. However, how to measure

and adjust for discontinuities in this case is also an area that requires new research.
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